Что такое квантовое поле?

Статьи

Понятие квантовых полей

Помимо проблемы физической реальности элементарных частиц, необходимо изучить, как они взаимодействуют.

Например, две частицы массы взаимодействуют через притягивающую силу — гравитационную силу, так как считается, что везде есть гравитационное поле, которое несет информацию о массе, и заставляет две частицы двигаться навстречу друг другу, что мы называем «гравитационной притягивающей силой».

В этом контексте гравитационное поле — это поле. Но что такое поле?

Понятие поля в математике

Возьмите двух- или трехмерный ориентир что угодно. Визуализируйте точку в этом ориентире, любую. Сопоставьте с этой точкой значение, любое. Сделайте то же самое для другого пункта, затем другого. Фактически, с каждой точкой в этой системе координат сопоставьте значение. Когда вы это сделали, у вас есть поле.

Поле представляет собой ориентир, к которому привязано значение для каждой точки.

Например: возьмите комнату, в которой вы находитесь, затем поместите начало координат (0; 0; 0) в один из углов. Теперь у каждого места в комнате есть координаты. Наконец, для каждого места в комнате укажите температуру в этой точке. Затем мы получаем карту температуры в вашей комнате: математически эта карта представляет собой поле: поле температуры.

К одной и той же точке могут быть привязаны несколько значений. В нашем примере, помимо температуры, можно связать атмосферное давление, влажность, чистоту воздуха, скорость выбросов CO2 и т.д. Тогда у нас есть ориентир с множеством полей.

У нас также может быть векторное поле, что позволяет связать вектор с любой точкой в ​​пространстве. Например, если мы свяжем скорость ветра в этой точке с каждой точкой в ​​пространстве, мы получим векторное поле.

Эти различные поля могут быть связаны: таким образом, вектор скорости или даже влажность в точке будут зависеть от давления и температуры воздуха в окружающих точках.

Эта работа является то, что делается в метеорологии: с помощью физических показаний (температура, давление, относительная влажность) можно определить, будет ли ветер, в каком направлении, или предсказать изменения относительной влажности, дождя, короче говоря, прогноз погоды в ближайшие часы или дни.

Что такое квантовое поле?
Реальная погода в том или ином месте может быть разбита на несколько параметров, смоделированных по полям: ветер, температура, давление, влажность и т. д.

Мы также можем ассоциировать тензоры с каждой точкой (более общий объект, чем скаляры и векторы).

Таким образом, поле — это что-то вроде карты значений (скаляров, векторов, тензоров…) в системе координат. Таким образом, каждая контрольная точка имеет определенное значение. Измеряя разные поля для разных величин, мы можем моделировать более сложные явления.

Частицы и поля квантовой теории

Более ста лет назад зародились основные понятия атомной физики, которые со временем получили продолжение в квантовой физике, сформулировав теорию поля. Различают двойственность классической теории. Она сформировалась в начале 20 века. Тогда частицы представлялись как маленькие комочки энергии, сформировавшие материю. Все они двигались согласно известной законам классической механики, о которых ранее подробно изложил в своих работах британский ученый Исаак Ньютон. Затем приложили руку к дальнейшим исследованиям Фарадей и Максвелл. Он сформировали законы динамики электромагнитного поля.

В это же время Планк впервые вводит в физическую науку понятие о порции, кванте, излучении для объяснения закономерностей теплового излучения. Затем физик Альберт Эйнштейн обобщил эту идею Планка о дискретности излучения. Он предположил, что такая дискретность не связывается с определенным механизмом взаимодействия излучения и веществом, а присуща на внутреннем уровне самому электромагнитному излучению. Электромагнитное излучение – это и есть кванты. Подобные теории вскоре получили экспериментальное подтверждение. На их основе были объяснены закономерности фотоэффекта.

Связанные понятия

Ква́нтовая электродина́мика (КЭД) — квантовополевая теория электромагнитных взаимодействий; наиболее разработанная часть квантовой теории поля. Классическая электродинамика учитывает только непрерывные свойства электромагнитного поля, в основе же квантовой электродинамики лежит представление о том, что электромагнитное поле обладает также и прерывными (дискретными) свойствами, носителями которых являются кванты поля — фотоны. Взаимодействие электромагнитного излучения с заряженными частицами рассматривается… Фи́зика элемента́рных части́ц (ФЭЧ), часто называемая также фи́зикой высо́ких эне́ргий или субъядерной физикой — раздел физики, изучающий структуру и свойства элементарных частиц и их взаимодействия. Ква́нтовая меха́ника — раздел теоретической физики, описывающий физические явления, в которых действие сравнимо по величине с постоянной Планка. Предсказания квантовой механики могут существенно отличаться от предсказаний классической механики. Поскольку постоянная Планка является чрезвычайно малой величиной по сравнению с действием объектов при макроскопическом движении, квантовые эффекты в основном проявляются в микроскопических масштабах. Если физическое действие системы намного больше постоянной… Тео́рия струн — направление теоретической физики, изучающее динамику взаимодействия не точечных частиц, а одномерных протяжённых объектов, так называемых квантовых струн. Теория струн сочетает в себе идеи квантовой механики и теории относительности, поэтому на её основе, возможно, будет построена будущая теория квантовой гравитации. Статисти́ческая фи́зика — это раздел теоретической физики, посвященный изучению систем с произвольным (часто — бесконечным или несчетным) числом степеней свободы. Изучаемые системы могут быть как классическими, так и квантовыми.

Суперсимме́трия или симме́трия Фе́рми — Бо́зе — гипотетическая симметрия, связывающая бозоны и фермионы в природе. Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить вещество во взаимодействие (или в излучение), и наоборот. Ква́нтовая хромодина́мика (КХД) — калибровочная теория квантовых полей, описывающая сильное взаимодействие элементарных частиц. Наряду с электрослабой теорией, КХД составляет общепринятый в настоящее время теоретический фундамент физики элементарных частиц. Калибро́вочная инвариа́нтность — инвариантность прогнозов физической полевой теории относительно (локальных) калибровочных преобразований — координатно-зависимых преобразований поля, описывающих переход между базисами в пространстве внутренних симметрий этого поля. Ква́нтовая гравита́ция — направление исследований в теоретической физике, целью которого является квантовое описание гравитационного взаимодействия (и, в случае успеха, — объединение таким образом гравитации с остальными тремя фундаментальными взаимодействиями, то есть построение так называемой «теории всего»). Статистическая механика — раздел статистической физики, изучающий методами теории вероятностей поведение систем (произвольного) конечного числа частиц. Число частиц является произвольным конечным натуральным числом. Впервые классическую статистическую механику одной частицы рассмотрел Макс Борн в 1955 году. Электродина́мика — раздел физики, изучающий электромагнитное поле в наиболее общем случае (то есть, рассматриваются переменные поля, зависящие от времени) и его взаимодействие с телами, имеющими электрический заряд (электромагнитное взаимодействие). Предмет электродинамики включает связь электрических и магнитных явлений, электромагнитное излучение (в разных условиях, как свободное, так и в разнообразных случаях взаимодействия с веществом), электрический ток (вообще говоря, переменный) и его взаимодействие… Фи́зика высо́ких эне́ргий — раздел физики элементарных частиц, изучающий взаимодействия элементарных частиц и/или ядер атомов при энергиях столкновения, существенно выше, чем массы самих сталкивающихся частиц (см. Эквивалентность массы и энергии). Станда́ртная моде́ль — теоретическая конструкция в физике элементарных частиц, описывающая электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Стандартная модель не является теорией всего, так как не описывает тёмную материю, тёмную энергию и не включает в себя гравитацию. Экспериментальное подтверждение существования промежуточных векторных бозонов в середине 80-х годов завершило построение Стандартной модели и её принятие как основной. Необходимость незначительного расширения… Элемента́рная части́ца — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые на практике невозможно расщепить на составные части. О́бщая тео́рия относи́тельности (ОТО; нем. allgemeine Relativitätstheorie) — геометрическая теория тяготения, развивающая специальную теорию относительности (СТО), предложенная Альбертом Эйнштейном в 1915—1916 годах. Ква́нтовая фи́зика — раздел теоретической физики, в котором изучаются квантово-механические и квантово-полевые системы и законы их движения. Основные законы квантовой физики изучаются в рамках квантовой механики и квантовой теории поля и применяются в других разделах физики. Атомная физика — раздел физики, изучающий строение и свойства атомов. Атомная физика возникла в конце XIX — начале XX века в результате экспериментов, установивших, что атом представляет собой систему из положительно заряженного ядра и отрицательно заряженных электронов, и получила своё развитие в связи с созданием квантовой механики, объяснившей структуру атома. Строение атомного ядра изучается в ядерной физике. Асимптоти́ческая свобо́да — физический эффект, возникающий в некоторой калибровочной теории, в которой взаимодействие между частицами, такими как кварки, становится сколь угодно малым при уменьшении расстояния между частицами. Другими словами, в асимптотическом пределе r→0 частицы перестают взаимодействовать и становятся свободными. Теорети́ческая фи́зика — раздел физики, в котором в качестве основного способа познания природы используется создание теоретических (в первую очередь математических) моделей явлений и сопоставление их с реальностью. В такой формулировке теоретическая физика является самостоятельным методом изучения природы, хотя её содержание, естественно, формируется с учётом результатов экспериментов и наблюдений за природой. Тео́рия относи́тельности — физическая теория пространства-времени, то есть теория, описывающая универсальные пространственно-временные свойства физических процессов. Специа́льная тео́рия относи́тельности (СТО; также называемая ча́стная тео́рия относи́тельности) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света (в рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей). Фактически СТО описывает геометрию четырёхмерного пространства-времени и базируется на плоском… Математи́ческая фи́зика — теория математических моделей физических явлений. Она относится к математическим наукам; критерий истины в ней — математическое доказательство. Однако, в отличие от чисто математических наук, в математической физике исследуются физические задачи на математическом уровне, а результаты представляются в виде теорем, графиков, таблиц и т. д. и получают физическую интерпретацию. При таком широком понимании математической физики к ней следует относить и такие разделы механики… Классическая теория поля — физическая теория о взаимодействии полей и материи, не затрагивающая квантовых явлений. Обычно различают релятивистскую и нерелятивистскую теорию поля. Си́льное ядерное взаимоде́йствие (цветово́е взаимоде́йствие, я́дерное взаимоде́йствие) — одно из четырёх фундаментальных взаимодействий в физике.
Подробнее: Сильное взаимодействие Фи́зика твёрдого те́ла — раздел физики конденсированного состояния, задачей которого является описание физических свойств твёрдых тел с точки зрения их атомного строения. Интенсивно развивалась в XX веке после открытия квантовой механики. Развитие стимулировалось широким спектром важных задач прикладного характера, в частности, развитием полупроводниковой техники. Перенормиро́вка в квантовой теории поля — процедура устранения ультрафиолетовых расходимостей в классе теорий, называемых перенормируемыми. С физической точки зрения соответствует изменению начальных (затравочных) лагранжианов таких теорий с тем, чтобы результирующая динамика теории не содержала сингулярностей (и совпадала с наблюдаемой, если теория претендует на описание действительности). Другими словами, перенормировка — это уточнение лагранжиана взаимодействия с той целью, чтобы он не приводил… Фундамента́льные взаимоде́йствия — качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел. Класси́ческая меха́ника — вид механики (раздела физики, изучающего законы изменения положений тел в пространстве со временем и причины, его вызывающие), основанный на законах Ньютона и принципе относительности Галилея. Поэтому её часто называют «ньютоновой механикой». Сла́бое взаимоде́йствие — фундаментальное взаимодействие, ответственное, в частности, за процессы бета-распада атомных ядер и слабые распады элементарных частиц, а также нарушения законов сохранения пространственной и комбинированной чётности в них. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики и физики высоких энергий (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвёртого… Адро́ны (от др.-греч. ἁδρός «крупный; массивный») — класс составных частиц, подверженных сильному взаимодействию. Термин предложен советским физиком Л. Б. Окунем в 1962 году, при переходе от модели Сакаты сильно взаимодействующих частиц к кварковой теории. Для элементарных частиц, не участвующих в сильных взаимодействиях, Л. Б. Окунь тогда же предложил название аденоны. В физике элементарных частиц электрослабое взаимодействие является общим описанием двух из четырёх фундаментальных взаимодействий: слабого взаимодействия и электромагнитного взаимодействия. Хотя эти два взаимодействия очень различаются на обычных низких энергиях, в теории они представляются как два разных проявления одного взаимодействия. При энергиях выше энергии объединения (порядка 100 ГэВ) они соединяются в единое электрослабое взаимодействие.
Подробнее: Электрослабое взаимодействие Квантовая информация — основной предмет изучения квантовой информатики — раздела науки на стыке квантовой механики и теории информации, включающей вопросы квантовых вычислений и квантовых алгоритмов, квантовых компьютеров и квантовой телепортации, квантовой криптографии и проблемы декогерентности. Супергравита́ция (от супер… и лат. gravitas — тяжесть) — обобщение общей теории относительности (ОТО) на основе суперсимметрии; или часто: многомерная супергравитация — название физических теорий, включающих дополнительные измерения, суперсимметрию и гравитацию. Физи́ческая кине́тика (др.-греч. κίνησις — движение) — микроскопическая теория процессов в неравновесных средах. В кинетике методами квантовой или классической статистической физики изучают процессы переноса энергии, импульса, заряда и вещества в различных физических системах (газах, плазме, жидкостях, твёрдых телах) и влияние на них внешних полей. В отличие от термодинамики неравновесных процессов и электродинамики сплошных сред, кинетика исходит из представления о молекулярном строении рассматриваемых… Тео́рия всего́ — гипотетическая объединённая физико-математическая теория, описывающая все известные фундаментальные взаимодействия. Первоначально данный термин использовался в ироническом ключе для обозначения разнообразных обобщённых теорий. Со временем термин закрепился в популяризациях квантовой физики для обозначения теории, которая объединила бы все четыре фундаментальных взаимодействий в природе. В современной научной литературе вместо термина «теория всего» как правило используется термин… Квантовая оптика является более общей теорией, чем классическая оптика. Основная проблема, затрагиваемая квантовой оптикой — описание взаимодействия света с веществом с учётом квантовой природы объектов, а также описания распространения света в специфических условиях. Для того, чтобы точно решить эти задачи, требуется описывать и вещество (среду распространения, включая вакуум) и свет исключительно с квантовых позиций, однако часто прибегают к упрощениям: один из компонентов системы (свет или вещество… Квантовая статистика — раздел статистической механики, в котором n-частичные квантовые системы описываются методом статистических операторов комплексов частиц (редуцированными матрицами плотности). Число частиц n может быть произвольным натуральным (конечным) числом или бесконечностью. Втори́чное квантова́ние (каноническое квантование) — метод описания многочастичных квантовомеханических систем. Наиболее часто этот метод применяется для задач квантовой теории поля и в многочастичных задачах физики конденсированных сред. Меха́ника сплошны́х сред — раздел механики, физики сплошных сред и физики конденсированного состояния, посвящённый движению газообразных, жидких и деформируемых твёрдых тел, а также силовым взаимодействиям в таких телах. Электромагни́тное взаимоде́йствие — одно из четырёх фундаментальных взаимодействий. Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля. Солито́н — структурно устойчивая уединённая волна, распространяющаяся в нелинейной среде. В физике квантова́ние — построение квантового варианта некоторой неквантовой (классической) теории или физической модели в соответствии с аксиомами квантовой физики. Класси́ческая фи́зика — физика до появления квантовой теории и теории относительности. Основы классической физики были заложены в Эпоху Возрождения рядом учёных, из которых особенно выделяют Ньютона — создателя классической механики. Фи́зика пла́змы — раздел физики, изучающий свойства и поведение плазмы, в частности, в магнитных полях. Плазма рассматривается как неструктурированная квазинейтральная система из большого числа заряженных частиц с коллективной динамикой. Я́дерная фи́зика — раздел физики, изучающий структуру и свойства атомных ядер, а также их столкновения (ядерные реакции). Симме́три́я в широком смысле — соответствие, неизменность (инвариантность), проявляемые при каких-либо изменениях, преобразованиях (например: положения, энергии, информации, другого). Сверхтеку́честь — способность вещества в особом состоянии (квантовой жидкости), возникающем при температурах, близких к абсолютному нулю (термодинамическая фаза), протекать через узкие щели и капилляры без трения. До недавнего времени сверхтекучесть была известна только у жидкого гелия, однако в последние годы сверхтекучесть была обнаружена и в других системах: в разрежённых атомных бозе-конденсатах, твёрдом гелии. Поляризация вакуума — совокупность виртуальных процессов рождения и аннигиляции пар частиц в вакууме, обусловленных квантовыми флуктуациями. Эти процессы формируют нижнее (вакуумное) состояние систем взаимодействующих квантовых полей. Бозо́н Хи́ггса, хи́ггсовский бозо́н, хиггсо́н (англ. Higgs boson) — элементарная частица (бозон), квант поля Хиггса, с необходимостью возникающий в Стандартной модели физики элементарных частиц вследствие хиггсовского механизма спонтанного нарушения электрослабой симметрии. Его открытие завершает Стандартную модель. В рамках этой модели отвечает за инертную массу таких элементарных частиц, как бозоны. С помощью поля Хиггса объясняется наличие инертной массы частиц-переносчиков слабого взаимодействия… Метод ренормализационной группы (также часто называемый методом ренормгруппы, методом РГ) в квантовой теории поля — итеративный метод перенормировки, в котором переход от областей с меньшей энергией к областям с большей вызван изменением масштаба рассмотрения системы.

Векторы вместо координат и скоростей

Основное отличие квантовой механики — в том, что мы больше не будем описывать физические тела с помощью координат и скоростей. Основное понятие в квантовой механике — это вектор состояния. Это шкатулка с квантово-механической информацией о физической системе, которую мы изучаем. Причем я использую слово «система», потому что вектор состояния — это штука, которая может описывать состояние как электрона, так и бабушки, лузгающей семечки на скамейке. То есть это понятие имеет очень широкий круг охвата. И мы хотим найти все векторы состояния, которые содержали бы в себе всю необходимую нам информацию об изучаемом объекте.

Далее естественно задаться вопросом «А как же нам эти векторы найти, а потом извлечь из них то, что хочется?». Здесь нам на помощь приходит следующее важное понятие квантовой механики — оператор. Это правило, по которому одному вектору состояния ставится в соответствие другой. Операторы должны обладать определенными свойствами, и некоторые из них (но не все) извлекают информацию из векторов состояния о нужных нам физических величинах. Такие операторы называются операторами физических величин.

Измерить то, что трудно измерить

Квантовая механика последовательно решает две задачи — стационарную и эволюционную, причем по очереди. Суть стационарной задачи состоит в том, чтобы определить все возможные векторы состояния, которые могут описывать физическую систему в данный момент времени. Такие векторы являются так называемыми собственными векторами операторов физических величин. Определив их в начальный момент, интересно проследить, как они будут эволюционировать, то есть меняться со временем.

Мюон — неустойчивая элементарная частица с отрицательным электрическим зарядом и спином 1⁄2. Антимюон — античастица с квантовыми числами (в том числе зарядом) противоположного знака, но с равной массой и спином.

Посмотрим на эволюционную задачу с точки зрения теории элементарных частиц. Пусть мы хотим столкнуть электрон и его партнера — позитрон. Другими словами, у нас есть вектор состояния-1, который описывает электрон-позитронную пару с определенными импульсами в начальном состоянии. А потом мы хотим узнать, с какой вероятностью после столкновения электрона и позитрона родятся мюон и антимюон. То есть система будет описываться вектором состояния, который содержит информацию про мюон и его антипартнера тоже с определенными импульсами в конечном состоянии. Вот вам и эволюционная задача — мы хотим узнать, с какой вероятностью наша квантовая система перескочит из одного состояния в другое.

Образование пары позитрон — электрон © iStock

Пусть мы также решаем задачу о переходе физической системы из состояния-1 в состояние-2. Допустим, у вас есть шарик. Он хочет попасть из точки A в точку B, и существует множество мыслимых путей, по которым он мог бы совершить это путешествие. Но повседневный опыт показывает, что если вы кидаете шарик под определенным углом и с определенной скоростью, то у него есть только один реальный путь. Квантовая же механика утверждает другое. Она говорит, что шарик путешествует одновременно по всем этим траекториям. Каждая из траекторий вносит свой (больший или меньший) вклад в вероятность перехода из одной точки в другую.

Поля

Квантовая теория поля называется так потому, что она описывает не частицы сами по себе, а некоторые более общие сущности, которые называются полями. Частицы же в квантовой теории поля являются элементарными переносчиками полей. Представьте воды мирового океана. Пусть наш океан спокоен, на его поверхности ничего не бурлит, нет волн, пены и так далее. Наш океан есть поле. А теперь представьте уединенную волну — только один гребень волны в форме горки, родившийся в результате какого-то возбуждения (например, удара по воде), который теперь путешествует по бескрайним просторам океана. Это частица. Эта аналогия иллюстрирует главную идею: частицы есть элементарные возбуждения полей. Таким образом, наша реальность — полевая, а мы состоим лишь из элементарных возбуждений этих полей. Будучи рожденными этими самыми полями, их кванты содержат в себе все свойства своих прародителей. Такова роль частиц в мире, в котором одновременно существует множество океанов, именуемых полями. С классической точки зрения поля сами по себе — это обычные числовые функции. Они могут состоять только из одной функции (скалярные поля), а могут — из множества (векторные, тензорные и спинорные поля).

Новые открытия и теории

Примерно 50 лет назад ряд физиков нового поколения попытались использовать аналогичный подход в описании гравитационного взаимодействия. Они не только подробно описали все процесса, происходящие в условиях планеты, но и устремили свои взгляды на проблемы возникновения Вселенной, сформулировав теорию Большого взрыва.

Квантовая теория поля стала обобщением квантовой механики. Квантовая механика, наконец, стала ключом к пониманию важнейшей проблемы атома, в том числе открыла двери перед исследованиями другими ученых в постижении загадок микромира.

Квантовая механика позволяет описывать движение электронов, протонов и иных частиц, однако не их порождение или уничтожение. Оказалось, что ее применение верно только для описания систем, в которых остается неизменно число частиц. Была доказана наиболее интересная в электродинамике задача испускания и поглощения электромагнитных волн заряженными частицами. Это соответствует порождению или уничтожению фотонов. Теория оказалась вне рамок компетенции ее исследования.

На основе первоначальных знаний стали приниматься в разработку иные теории. Так в Японии выдвинули квантовую электродинамику как наиболее перспективное и точное направление научной деятельности последних лет. В дальнейшем развитие получило направление хромодинамики и квантовая теория электрослабых взаимодействий.

Квантовая теория поля рассматривает в качестве основных следующие теории:

  • свободные поля и корпускулярно-волновой дуализм;
  • взаимодействие полей;
  • теорию возмущений;
  • расходимости и перенормировки;
  • функционального интеграла.

Квантованное свободное поле имеет запас свободной энергии и имеет возможность отдавать ее определенными частями. При уменьшении энергии поля на автоматически означает исчезновение одного фотона другой частоты. Происходит переход поля в иное состояние, при этом происходит уменьшение на одну единицу фотона. После таких последовательных переходов в итоге образуется состояние, где число фотонов равно нулю. Отдача энергии полем становится невозможной.

Поле может существовать в состоянии вакуума. Подобная теория не совсем понятна, но является полностью обоснованной с физической точки зрения. Электромагнитное поле в вакуумном состоянии не может быть поставщиком энергии, однако вакуум вообще никак не может проявить себя.

Физический вакуум — это состояние с необходимыми и значимыми свойствами, проявляющимися в реальных процессах.

Такое утверждение верно для других частиц. И его можно представить как низшее энергетическое положение этих частиц и их полей. Вакуумным при рассмотрении взаимодействующих полей называют низшее энергетическое состояние всей системы данных полей.

Проблемы квантовой теории поля

В квантовой электродинамике исследователи достигли немало успехов, однако не всегда удается понять, как они были показаны. Все эти успехи нуждаются в дальнейшем объяснении. Теория сильных взаимодействий стала формироваться развиваться по аналогии квантовой электродинамики. Тогда роль переносчиков взаимодействия были приписана частицам, что обладают массой покоя. Также существует проблема перенормируемости.

Она не могла рассматриваться как непротиворечивое построение, поскольку в ней появляются бесконечно огромные значения для определенных физических величин и отсутствует понимание того, что же с ними делать. Идея изменения нормировок не только объясняет исследуемые эффекты, но и придает всей теории черты логической замкнутости, устранив из нее расходимости. Ученые сталкиваются с определенными проблемами на различных стадиях исследований. Им будет посвящено немало времени на устранение, поскольку точных показателей до сих пор в квантовой теории поля не существует.

Источники
  • https://new-science.ru/chto-takoe-kvantovoe-pole/
  • https://spravochnick.ru/fizika/kvantovaya_teoriya/kvantovaya_teoriya_polya/
  • https://kartaslov.ru/%D0%BA%D0%B0%D1%80%D1%82%D0%B0-%D0%B7%D0%BD%D0%B0%D0%BD%D0%B8%D0%B9/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%B0%D1%8F+%D1%82%D0%B5%D0%BE%D1%80%D0%B8%D1%8F+%D0%BF%D0%BE%D0%BB%D1%8F
  • https://theoryandpractice.ru/posts/14051-quantum-field-theory

Оцените статью
Маяк Науки